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Abstract

This research note exhibits a new seasonal adjustment methodology de-
veloped at QuantCube Technology: Seasonal Trend And Holiday decom-
position with Loess (STAHL). Derived from the STL procedure introduced
by R. B. Cleveland et al. (1990), STAHL aims to be applied to alternative
data series at multiple frequencies. It is able to proceed to Working Day
Adjustment coping with time-varying or periodic calendars such as the
Chinese New Year, to handle structural or periodic missing values, and
to provide a point-in-time procedure to generate unrevised trend and sea-
sonal components. In a first part, we describe the STAHL framework and
its different key innovative steps: spectral identification of multiple sea-
sonal frequencies, industrial preprocessing including resampling, seasonal
adjustment with missing value handling, specific holiday adjustment and
point in time seasonal trend extraction. In the second part, we provide
multiple empirical illustrations based on high frequency data. We notably
focus on the US Weekly Initial claims series during the outstanding peri-
ods of Covid outbreaks which raised critical issues for real-time seasonality
extraction. As such we discuss the consequences of our point-in-time (ie.
no revision) principle compared to the adjusted series produced by the US
Department of Labour. Second, we focus on many different high frequency
alternative data series to explore how STAHL deals with multiple season-
ality and holidays. We notably focus on periodic missing value treatments
and measure the Chinese Lunar Calendar impact on human activity cap-
tured through daily measures of NO2 Air pollution.
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1 Introduction

Macroeconomic nowcasting has increasingly involved the use of various types
of massive data over the past decade. Alternative data refer to non-traditional
sources of information that can provide unique insights. They can be clus-
tered into four major categories: text data, geospatial data, geolocation data,
and structured data. Text data can be recovered via multiple sources, mainly
through the internet, such as social media data, professional blogs, news arti-
cles, job ads, web searches, or hotel and restaurant reviews, for instance.

The availability of high-resolution satellite imagery and the development of
deep learning models have led to numerous applications allowing the recovery
of various geospatial data from earth observation satellite images, atmospheric
data, or radar data. Geolocation data can take the form of shipping traffic,
flights, mobility, or vehicle transit numbers. Structured data can encompass
prices of goods and services, real estate prices, internet queries, and web traffic.

QuantCube Technology aims to provide a competitive edge by uncovering
hidden patterns, detecting emerging trends, and enhancing predictive models
by leveraging all those alternative data. Most of these data are produced by
QuantCube Technology at a daily frequency, seven days a week, without ex-
ception. These time series exhibit a rather short history, oscillating between
five and just over ten years. As such, their statistical analysis must address
many specific issues. A primary problem to tackle is the complexity of the
multiplicity and potential interactions of seasonal patterns (notably annual,
monthly, weekly, and daily cycles) and calendar effects (such as holidays, and
time-varying non-Gregorian calendars like the Chinese or Hijri calendars).

Furthermore, some alternative data may suffer from high sensitivity to out-
liers at high frequencies, such as mobility bans during the COVID periods, and
may be prone to periodic or structural missing values, like clouds disturbing
the quality of satellite images at regular intervals. In addition, most financial
and macro practitioners expect these alternative data sources to be point-in-
time and un-revised, which presents a specific practical challenge from a sea-
sonality extraction perspective. This article aims to precisely tackle all these
reported issues by introducing a new seasonal adjustment framework developed
at QuantCube Technology: Seasonal Trend and Holiday Decomposition based
on LOESS (STAHL).

In the first section, this research note provides a brief literature review of the
current state of the art in high-frequency seasonal adjustment procedures, along
with their pros and cons from a practitioner’s and industrial perspective. We
particularly focus on the STL (Seasonal Trend Decomposition based on LOESS)
approach and discuss why we consider an extended version of this procedure as
the best compromise for point-in-time seasonal adjustment of alternative data.
In the second section, we introduce the STAHL framework, describing the five
steps of the algorithm and emphasizing its specific innovations: handling of
missing values, adjustment for working days, and the inclusion of constraints
for point-in-time calculation. While the third section details the treatment
of periodic or structural missing values as one innovative advantage of such a
procedure, the fourth section focuses on a completely new approach in STL to
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deal with working day adjustment. The fifth section details how point-in-time
seasonal adjustment can be conducted using asymmetric filters and hints at
potential improvements. The final section is devoted to empirical illustrations,
where different types of high-frequency data are studied with STAHL: weekly
US initial unemployment claims and daily China air pollution data based on
satellite images. Both series provide interesting illustrations of the STAHL
procedures, whether it is to produce point-in-time rolling seasonally adjusted
series, manage outliers and extreme periods such as the COVID-19 episode,
handle structural missing values, or address the impact of the Chinese Lunar
Calendar.

2 Seasonal Adjustment Methods for High Frequency
Alternative Data: a Review

The digital transformation process of our modern economies and the outbreak
of the COVID-19 pandemic have enhanced an interest for the statistical treat-
ment of alternative and high frequency data. Infra-monthly economic data are
in strong demand to provide more timely early warning economic nowcasting
indicators which require to tackle specific statistical treatment. Webel (2022)
has provided the most recent, to our knowledge, general and very exhaustive
review of such methods.

Let’s note yt a discrete time series with a seasonal periodicity of τ . For ex-
ample, τ = 12 for monthly data, τ = 52.18 for weekly series and τ = 365.2425
for yearly seasonality measured at daily frequency. The consensus in the statis-
tical literature qualifies as a higher frequency (HF) time series if data is observed
at infra-monthly intervals (τ > 12) (resp. lower frequency time series (LF) if
data is observed at monthly or lower periodicities (τ ≤ 12) ).

While different parts of the literature focused on minute-by-minute, hourly,
4-hourly data, we will focus on daily and weekly data in this exercise, as
QuantCube Technology produces a large variety of those kind of HF series in an
industrial way seven days a week. At such frequencies, there are already multi-
ple difficulties arising due to interactions of calendar and seasonal effects which
are almost absent at low frequencies. For example, as described in Webel (2022),
fixed-holiday and end-of-period effects may depend on the particular days of the
week which the corresponding events fall onto. Christmas effects may be no-
ticeably different for 24 to 26 December falling onto Tuesday through Thursday
Friday through Sunday. The same applies to the short-lived end-of-Q3 elevation
in level if the final day of that quarter had not been a Monday.

Calendar-related dynamics may become even more complicated when sec-
ular and religious activities mainly follow different calendars with HF data.
Campante and Yanagizawa-Drott (2015) provide evidence that the Hijri (ie.
muslim) calendar impacts economic time series such as growth, mobility and
private consumption.1 In this research, we focus on the impact of the Chinese

1Webel (2022) also hints at the lunar Hijri calendar as deviations from the solar Gregorian
calendar, which is approximately 11 days shorter.
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lunar calendar in the empirical sections to hint at a key improvement to STL
related to STAHL.

As illustrated in Webel (2022) or in Proietti and Pedregal (2022), the sea-
sonal profile of HF time series is highly complex due to the coexistence of
multiple and super-imposed seasonal patterns with integer versus non-integer
periodicities.2

The issue of data accessibility presents another quandary. Currently, high-
frequency (HF) observations typically provide only a few years of history, which
is often inadequate for reliably predicting all aspects of HF dynamics, including
possible interaction effects. Conducting seasonal and calendar extraction on
alternative data with an ’industrial’, i.e., a strongly standardized approach, is
a challenge that must be addressed with as parsimonious a model as possible.
Alternative data can also suffer from a significant amount of missing values,
due either to measurement issues or holiday unavailability. This adds another
constraint to the seasonal adjustment method, which must be able to deal with
both regular and irregular patterns of missing values.

2.1 Extending Conventional Methods from the X11 Family

Numerous statistical organizations worldwide use one of several recognized
methods for seasonally-adjusting low frequency (LF) time series. These meth-
ods include the X-11 approach, the AutoRegressive Integrated Moving Average
(ARIMA) model-based strategy, and the Structural Time Series (STS) models.

Ladiray, Palate, et al. (2018) provide some guidelines to adapt the ’X11
family’ seasonal adjustment procedure first introduced in Ladiray and Quen-
neville (2012) to HF data3, but also the STL (Seasonal Trend Decomposition
using LOESS) introduced by R. B. Cleveland et al. (1990). They show that
the main seasonal adjustment methods used for monthly and quarterly series,
such as TRAMO-SEATS and X12-ARIMA, as well as STL, can be adapted
to high frequency data which present multiple and non integer periodicities.
For instance, TRAMO-SEATS can be modified using fractional ARIMA mod-
els and more efficient numerical algorithms. The non-parametric and iterative
processes of X11 and STL can also be adapted after imputation of the missing
values induced by the different lengths of months and year. But the authors
argue that the tuning of the multiple parameters of the methods might be cum-
bersome.

Indeed, according to the authors, the tuning of X11 and STL parameters,
namely the length of the filters used in the decomposition, needs to be im-
proved. In the genuine X11 algorithm, and for monthly and quarterly series,
the order of the moving averages is selected according to a “signal to noise”
ratio. Thresholds have been defined by simulations and practice, which may be
an obstacle for an industrial generalization of this procedure for series dealing
with multiple high frequencies. For Ladiray, Palate, et al. (2018) large scale

2Seasonal periodicities of infra-weekly and shorter patterns will be integers but those of the
monthly, quarterly and yearly patterns will be non-integers when consider at daily frequency.

3i.e. methods based on moving averages like X11, X11-ARIMA, X12-ARIMA and X-13
ARIMA-SEATS and methods based on Arima models like TRAMO-SEATS.
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simulations have still to be done to understand the behavior of these ratios and
to elaborate a decision rule for high frequency data.

2.2 Structural Time Series Models and its Variants

Proietti and Pedregal (2022) advocate for using Structural Time Series (STS)
models on HF times series following the seminal modelling of Harvey and Koop-
man (1993) and Harvey, Koopman, and Riani (1997). Unobserved Component
Models (UCM) can, by design, handle any kind of high-frequency data, but the
models tend to be very “series specific,” according to the authors. In partic-
ular, the selection of harmonics can be rather arbitrary and not that easy to
conduct at scale. As a consequence, UCM models lack the desired flexibility we
are looking for to implement an industrial seasonal adjustment procedure that
could be applied to a wide range of different alternative data and frequencies.
When testing UCM approaches, we notably experienced the same difficulties as
indicated by Ollech (2021). We also faced severe identification and convergence
issues in the maximum likelihood estimation of parameters. The optimiza-
tion method may indeed exhibit convergence issues with high frequency data,
leading to different local minima depending on the initialization, as pointed in
Ladiray, Palate, et al. (2018). This leads to issues with the identification of the
signal-to-noise ratios of the irregular component, and the separation between
the trend component and lower frequency seasonal components when consider-
ing STS and UCM models as an industrial solution for high-frequency seasonal
and calendar adjustment.

In the community of alternative data and machine learning players, Prophet,
a Bayesian approach developed by Facebook’s Core Data Science team (Taylor
and Letham (2018)) is an often popular algorithm to conduct seasonal adjust-
ment extraction. It has been particularly designed to provide a flexible and
reliable forecasting tool that can be configured, interpreted and evaluated by
subject-matter experts and analysts without great expertise in time series mod-
elling. The general idea is to specify relatively sparse Unobserved Component
models and impose priors on the unknown parameters. There are many pros
in favor of Prophet: it has been designed to detect yearly, weekly, and daily
seasonality in data and to be robust to outliers using L1 regularization in the
modeling process. It offers an intuitive way to include holidays, provided theirs
effects are known and well identified. However, Prophet was more designed as
a forecasting package rather than offering a general statistical decomposition
framework. As such it often works as a black-box making it harder to un-
derstand the model intricacies. Furthermore, the Prophet framework does not
currently allow the seasonal pattern to evolve with time, making it too restric-
tive for our macroeconomics daily series. Besides, trends extraction modelling
is based on a non linear saturating growth and trend change detection approach
which may also seem to be too restrictive, and not adapted to a point in time
procedure.
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2.3 Toward an Extended STL

According to Ollech (2021), the semi-parametric STL approach introduced in
R. B. Cleveland et al. (1990) offers an alternative technique to extract HF
series seasonality. Rooted in a locally weighted regression smoother (LOESS),
it stands out from X-11 due to its heightened flexibility concerning the frequency
of the time series: STL can handle any type of frequency, not just monthly or
quarterly.

A key strength of the STL algorithm, relative to STS, is its speedy compu-
tation, which enables the adjustment of varying seasonal frequencies within a
unified iterative process, as well as being robust to outliers, making it suitable
for data with anomalies. The primary purpose of STL is the decomposition
of a time series into its trend, seasonal, and remainder components, making
it straightforward to provide an interpretable decomposition. While it helps if
the seasonal period is known, STL can be used without this knowledge, which
can be a key strength when designing an industrial statistical decomposition
framework. Given the simplicity of STL, it is somewhat easier to diagnose is-
sues when they arise and to scale the approach. We will propose STAHL, an
extended framework, to automatically assess holiday impacts in an integrated
manner.

Ollech (2021) contributes to the existing literature by devising a seasonal
adjustment routine for daily data, but also hints at STL’s limitations to single
seasonal frequencies as it cannot deal with calendar effects such as the influ-
ences of moving holidays. Ollech (2021) also hints at convergence issues of the
RegARIMA model for holiday adjustment of daily time series. Ollech (2021)
also points at needed developments of STL to enhance its computational speed
and reliability of the outlier detection and estimation. Webel (2022) takes also
stock of needed automatic procedures to produce HF seasonal adjustments.
The extended STL and X-11 currently lack automatic selection rules for trend
and seasonal filters given HF data. We found many studies about point-in-time
vs in-sample seasonal estimates, and implied biases related to trend extraction,
but to our knowledge there is no procedure fully dedicated to point in time
seasonal adjustment, addressing notably asymmetric filtering problems. Our
goal is notably to tackle those issues.

3 The STAHL Framework

Based on the well-known additive model STAHL decomposes a time series (Yt)
into a trend-cycle (Tt) component, a seasonal (St) component, a calendar-
holiday component (Ht) and an irregular component (It) as in STL using
LOESS regressions and moving averages introduced in R. B. Cleveland et
al. (1990):

Yt = Tt + St +Ht + It, t = 1..N
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Each value is regressed in LOESS regressions on a local neighbourhood of a
linear or quadratic fitted polynomials4. For any point in time, the weight of
the observation xi, is given by5 :

vi(x) =

[
1−

(
|xi − x|
λq(x)

)3
]3

with λq(x) = |xi − xq| the distance between the qth farthest xi and x. The
parameter q is key to disentangle the trend from the seasonal component : by
determining the number of neighbouring observations in the local regression,
the higher q, the smoother the identified seasonal factor. The xi close to x have
the largest weights which ultimately decrease to zero at the qth farthest point.

As illustrated in Figure 1, STAHL consists of a modified STL inner loop
following the kth iteration made of seven stages focusing on extracting a first
version of trend and seasonal components :

1. Trend and Holiday adjustment6 (S + I = Y − T − 0.5H)

2. Preliminary subseries smoothing by LOESS of bandwidth ns to yield a
preliminary factor Ck

t including both irregular and seasonal components

3. Low-pass filter composed of moving average (Section 6) and LOESS asym-
metric filters of bandwidth nt to capture a low frequency Lk

t from Ck
t

4. First Seasonal Component : Sk
t = Ck

t − Lk
t

5. First Seasonally adjusted Series : SAk
t = Y k

t − Sk
t

6. First Trend Series T k
t extracted from the SAk

t series with a LOESS filter

7. First Irregular component : Ikt = Yt − SAk
t − T k

t

At this stage, the irregular component may contain outliers6 and non-
seasonal but regular holiday pattern effects. One of the key innovation with
the STAHL framework is to add a second inner loop that will disentangle out-
liers from holiday estimations, and leads to a systemic construction of seasonally
and holiday adjusted series.

4In the following STAHL implementation, we ignored the possibility of using quadratic
fitted polynomials to estimate LOESS regressions and restricted it to the linear case function
of the (weighted) observations x

5To minimize outliers contamination, LOESS regressions combine those weights of obser-
vations with Tukey biweight function

6Only half the holiday effect is removed for two reasons. First to give the seasonal com-
ponent priority over the holiday component. Second so that holidays still show up as outliers
in the outlier detection, for this reason the outlier detection takes in +0.5H.
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As introduced in Figure 1, the HTL (Holiday Trend Decomposition Loop)
works as follows :

8. Extraction of potential Holiday dates from SAk
t

9. Holiday estimation, Hk
t , through LOESS regression of bandwidth nh

10. Holiday selection with adjusted Confidence Interval (Appendix A.3.2)

11. Working Day Adjustment SAk
t = SAk

t −Hk
t

12. Trend Reestimation T k
t based on SAk

t with LOESS Regression of band-
width nt.

13. Reconstruction of the Irregular : Ikt = Yt − SAk
t − T k

t

Similarly to the STL framework, an outer loop is performed in order to
prevent outlier contamination in the seasonal adjustment. The loop consists
in extracting robustness weights ωt from the idiosyncratic component It using
Tukey’s (Tukey (1960)) biweight function :

ωt =

{(
1−

[
It
h

]2)2
if It < h

0 otherwise

}

where h = 6×median(It).

The robustness weights are then used as multipliers for the LOESS regres-
sion weights in the STL and HTL inner loops, significantly reducing the weights
of outlier observations.

With this framework, the parameters of the procedure are the following:

• np the size of the seasonal period

• ns the bandwidth of the seasonal LOESS

• nt the bandwidth of the low-pass LOESS for trend extraction

• nh the bandwidth of the holiday LOESS

• no the number of outer loops

4 STAHL Preprocessing Industrial Approach

4.1 Identification of seasonality

Before setting any other parameter for the STAHL procedure, the first parame-
ter to identify is np, which is the number of points in the seasonal pattern. For
this, in the context of high-frequency data, spectral density analysis, as used, for
instance, in T. S. McElroy, Monsell, and Hutchinson (2018), is very useful to vi-
sually identifying the peaks in the spectrum of the series, and thus the seasonal
frequency to correct. Furthermore, considering that our adjustment procedure
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Figure 1: STAHL Framework Decomposition
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is intended for use by people who may not be familiar with Fourier analysis,
we also include an automatic seasonality detection method in the procedure, as
described in Puech et al. (2020) and Li, Wang, and Han (2012).

The methodology consists in creating n random permutations (ỹi)i∈[0,n] of a
time series y. The permutations will remove any seasonal pattern, and thus the
spectral power of y will be spread across all frequencies as noise. By taking the
maximum of the spectral power of each permuted series ỹi we have a threshold
for the maximum power of the noise, which is smaller than the power associated
to a seasonal pattern in y. Using n = 100 permutations, we take the 99th largest
value across the series as the threshold above which the original series spectral
power indicates seasonality.

In practice, there can be issues of spectral leakage when attempting to
correctly identify peaks in the spectral density. However, since there is only
a small set of possible seasonal frequencies (yearly, quarterly, monthly, weekly),
we simply need to check if the spectral power around those frequencies is above
a certain threshold.

4.2 Resampling of data

By nature, the STAHL procedure can only be used for integer periodicities.
While this is not a problem for monthly and quarterly data, in practice, the
periodicities for weekly and daily data are mostly non-integers. To apply the
procedure to high-frequency data, we need to resample our data.

For daily data, we use the methodology described in Ollech (2021). To
adjust for seasonality, the length of each month is extended to 31 days, either
by time-warping the months over 31 points or by adding extra points at the end
of each month using cubic spline interpolation, depending on the nature of the
data. For annual seasonality, February 29th is removed to ensure a consistent
365 points per year before adjusting. Once the STAHL procedure has been
applied to the resampled data, the resampling procedure is reversed: the added
dates are removed, and the removed dates are added back using interpolation.

In the case of weekly data, the issue is slightly different because of the
phasing effect of weeks in the year: the year does not always start on a specific
day of the week, meaning the underlying annual seasonality is observed with a
progressive shift, with 52 or 53 weeks per year. 7

Therefore, for weekly data, we use a time-warping procedure to ensure that
we have 53 equally spaced point per year, by zero-padding the Fourier transform
of the series (see Appendix A.1 for more details).

This method of upsampling the data comes with caveats:

• With the time-warped axis, the holiday effects become less identifiable
due to the upsampling creating a spillover effect. However, since the
before and after effects of the holidays are also corrected by the STAHL

7Furthermore for economic data, the seasonal pattern usually takes place exactly between
January 1st and December 31st and simply be very slightly distorted for leap years, justifying
the removal of February 29th. It is not the case for weekly data, where the span of days
covered over 52 weeks shifts from year to year.
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procedure via the Barnacle Day procedure, the spillover is, in practice,
limited.

• The upsampling procedure is not point-in-time, the value of a point is
influenced by the future. Therefore to reproduce the pseudo real-time
conditions, you need to upsample, seasonally adjust, and then downsam-
ple vintage by vintage in an iterative way.

5 STAHL Parameter Estimation

In order to estimate the parameters of the STAHL procedure, our approach
provides a method to select them:

• For ns and nh, the selection is based on a leave-one-out cross-validation.

• Regarding nt the default value is the one suggested by R. B. Cleveland
et al. (1990) : nt =

1.5×np

1−n−1
s

. However, for some series we need a more

rigid low-pass filter to separate the trend from the seasonal and holiday
component, with the bandwidth of the filter equal to the size of the burn-
in period, i.e nt = np × ns.

• The number of outer loops no is determined by convergence criteria on
the trend, the seasonal and the holiday components, as suggested in R. B.
Cleveland et al. (1990).

6 STAHL Seasonal Adjustment with Missing Values

The treatment of periodic or structural missing values (Northern Regions of
China Air pollution Data impacted by clouds every winter) is one innovative
advantage of our procedure: every instance of a season can have missing-value,
the normal STL cannot handle such structural or periodic missing values.

The STL methodology excels at dealing with a few, randomly occurring
missing values. As the smoothed subseries is constructed, the LOESS regression
can easily fill in singular missing values. When the subseries are then combined
in the low-pass filter, there are no more missing values. However, this process
breaks down when the missing values are structural. By this, we mean that a
specific subseries consists entirely of missing values. If this occurs, the moving
average in the low-pass filter will encounter issues.

We address this problem by creating a missing-value-robust moving averages
procedure. Normally, if the moving average is of length 15, you would add the
last 15 values and divide by 15. However, if there is a missing value, it is
replaced by zero. Then, the last 15 values (including the zero) are added and
divided by 14. If the point at which the value is being estimated is missing, the
output value will also be missing. Finally, to ensure that there are no extreme
edge effects, each point is assigned a weight. The weight is 1 if there is no
missing value in the moving average, for the previous example the weight of
that point would be 14

15 . These weights are multiplied with the outlier weights
before the LOESS part of the low-pass filter.
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7 Holiday Adjustment within STAHL

The Holiday procedure is one of the main contributions of the STAHL method-
ology. It allows for the removal of the effects of holidays that are non-seasonal
by nature. For instance, Christmas always occurs at the same point in time
in each seasonal cycle. The 25th of December is always the 360th day of the
year. As such, when yearly seasonal adjustment is applied to a daily series,
Christmas will have its own subseries. However, some other holidays, such as
Easter, Ramadan, or the Chinese New Year, do not occur on the same day
each year in the Gregorian Calendar cycle. This means that they will not au-
tomatically be addressed during a regular STL procedure. STAHL offers an
innovative procedure to apply the same logic used in STL for removing these
specific time-varying holiday effects.

Several steps are required to perform a successful holiday extraction. The
first step is to remove any seasonal holidays from the list of holidays, as the
STL procedure can handle these by itself, as mentioned earlier. The next step
is to test the statistical significance of holiday dates. Some holidays might not
have any effect, and adding them can introduce unnecessary complexity to the
procedure. Including holidays that are statistically insignificant can adversely
affect the seasonal extraction.

While some holidays, such as Ramadan, last several days, others, like Easter,
do not. However, this does not mean that their effect is limited only to the ’of-
ficial’ holiday dates. To address this spillover issue, we developed the Barnacle
procedure 8. The Barnacle procedure allows us to handle days that are signifi-
cantly affected by their proximity to a major holiday. We conduct the Barnacle
procedure by checking the days adjacent to the holiday for significance. If these
days are significant, the subsequent day is checked, and so on, up to a hard
limit of 46 days before and after each holiday. This approach differs from the
impact models (constant impact, linear ramp-up and down), used, for example,
in Ladiray, Palate, et al. (2018), as here the shape of the impact is more flexible.

8 Point-in-Time Seasonal Trend Decomposition with
STAHL

At QuantCube, all series are produced and delivered on a daily basis and can-
not be revised. To ensure that the structure of each series remains consistent,
the historical parts of each series must be calculated in pseudo-real-time. This
means that each series is only allowed to use historical data for a single esti-
mation. Moreover, we do not want past values to change when further data is
added to the series.

In the classical STL procedure, there are three different stages where forward-
looking bias can occur. The first and most obvious is during any step of the
LOESS regressions. The second occurs during the low-pass filtering stage, when

8The barnacle is a crustacean that attaches itself to other animals or the ocean substrate.
We named the procedure after it because Barnacle days are significant due to their ’attach-
ment’ to the holiday events.
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a moving average is applied in both directions. Finally, during the outlier de-
tection, the median value that is normally calculated using the entire dataset
can introduce bias. To industrialize and create replicable series, these issues
need to be addressed.

8.1 Asymmetric LOESS

As a kernel regression, the LOESS applies a weight to the points on each side
next to the estimation point. It also applies a non-zero weight to the points
in the future. We get around this problem by applying an asymmetric kernel-
regression.

The LOESS regression differs from a more classical kernel regression in the
way the kernel width is set. In a classical kernel regression the bandwidth is set
to a fixed width and the number of points used to make an estimate changes
depending on how many data points are present around the estimation point.
In the LOESS regression the number of points are fixed and the width of the
kernel is set so that the same number of points are always present.

Starting with a kernel width of zero, in regular symmetric LOESS the kernel
width is slowly expanded in either direction until the required number of data
points is in the bandwidth. In the case of an asymmetric kernel, only the left
hand side bandwidth is expanded while the right hand side of the estimation
point has a bandwidth of zero.

In the edge-case, at the beginning or end of the dataset, the bandwidth can
only expand in one direction. Therefore both the symmetric and asymmetric
LOESS have identical kernels at the start and at the end. At the start this
means that there is a slight phase shift comparing the kernels at the end in
Figure 2 makes it clear how the asymmetric kernel replicates the point in time
estimation of a symmetric LOESS.

The LOESS asymmetric filter may not be the most optimal filter in terms of
gain and phase shift. Grun-Rehomme, Guggemos, and Ladiray (2018) provide
a comprehensive survey of optimal asymmetric filters and propose an approach
that balances the moving average properties in terms of accuracy, revisions and
timeliness and allows constructing asymmetric moving averages that present
almost no phase-shift. Their work also suggests exploring the non-parametric
approach based on spectral theory, as promoted by Wildi (2007), Wildi and T.
McElroy (2016), Wildi and T. S. McElroy (2019) with the Dynamic Asymmetric
Filters family. This procedure, designed in the frequency domain, would allow
the splitting of the revision criterion into two distinct effects, one related to
the gain and the other to the phase of the transfer functions. We leave the
exploration of introducing alternative asymmetric filters into STAHL for further
research.

8.2 Extrapolating Moving Averages Procedure

In the STL procedure, the smoothed subseries for the days is extended to be two
values longer than the original subseries. The outermost values are determined
using linear extrapolation. This ensures that when the bidirectional moving
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Figure 2: Kernel Comparison

averages procedure is applied, the final series has a length equal to that of the
original series. However, an issue arises in that the reverse moving average
(MA) procedure uses values from the future. To circumvent this issue, instead
of using the smoothed subseries values directly, at each point in time, the future
values are linearly extrapolated. Then, the moving average procedure is applied
to these extrapolated values.

8.3 Outlier Weighting

During the outlier weighting, all values are divided by six times the median value
of the series. If the entire series is taken into account, this can be considered
forward-looking behavior. To prevent this, we set a validation date, so that only
the median of the series up to the validation date is considered. This approach
ensures that the values of the series do not change when more values are added
in the future.

8.4 Critical Burn-In period

The critical burn-in period corresponds to the time span at the beginning of
the estimation, during which we are not yet able to produce data in pseudo-real
time. Each of the three sources of forward-looking bias has a different burn-in
period and affects the structure of the data-generating process in a unique way.

During the early stages of the asymmetric LOESS the kernel start of with
a right-tail, then it becomes symmetric before finally reaching its desired left-
tailed shape. The LOESS is used in the subseries, the low-pass and the trend.
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The final LOESS to reach the left tailed shape is the LOESS subseries. This
occurs at the point ns×np. Before this burn-in is completed the data will have
significant forward-looking, and as the weighted center of the kernel if further
forward it will also have a slight phase shift relative to the data past the burn
in.

The extrapolating moving average needs at least two values before it can
start extrapolating. As it extrapolated from the same point in each cycle it
requires 2×np points before it completes its burn-in. The change in the seasonal
extraction process comes from the fact that the extrapolated data tends to be
slightly more volatile than the original values. As they are averaged out again
so this does not significantly impact the quality of the estimation.

Finally, the validation date can be set freely and does not significantly im-
pact the seasonal extraction process. It therefore makes sense to set it to be at
least ns × np, but it does not cause significant forward looking issues if it is set
further into the future. Once a series goes into production this should not be
changed anymore in order to ensure a stable history.

8.5 Multiple Seasonality

The STAHL procedure handles the seasonality in an iterative manner, similar to
Ollech (2021), and MSTL in Bandara, Hyndman, and Bergmeir (2021), starting
by removing the seasonality of highest frequency first and then moving on to
lower frequencies.

9 Empirical Illustrations

9.1 Traditional Weekly Data: US Initial Unemployment Insur-
ance Claims

9.1.1 Data Description

As a first example, we applied the STAHL procedure to the US Initial Unem-
ployment Claims series. This weekly series, published by the US Employment
and Training Administration, covers the number of initial unemployment claims
made by unemployed US individuals to be eligible for employment benefits. It
is published both as a seasonally adjusted and a non-seasonally adjusted series
every Wednesday. This series is relevant to illustrate our seasonal adjustment
procedure for the following reasons:

• Its weekly frequency allows us to illustrate the resampling procedure.

• Available since 1968, its long history helps to illustrate the influence of the
business cycle on the trend. We also have access to every data vintage
from 2009 onward, which allows us to gauge the impact of revisions in
both the SA and NSA data.

• It exhibits outliers that can be due to catastrophic external events (hur-
ricanes, the Covid pandemic outbreak) or labour-related events (strikes).
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• It is a relevant series for tracking the macroeconomic situation and the
business cycle, used, for instance, in high-frequency composite indicators
such as the Aruoba-Diebold-Scotti Business Conditions Index9.

9.1.2 Official Seasonal Adjustment Methodology

The official initial claims seasonal adjustment10 is performed by the Bureau of
Labor Statistics (BLS) and has relied on the methodology described in W. P.
Cleveland, Evans, and Scott (2014) since 2002. The series exhibits yearly mul-
tiplicative and the seasonal factors are computed using a locally weighted re-
gression on sine and cosine terms, with the weights extracted from a state-space
modeling of the series. There is no trend extraction per se, as the series are
detrended by differentiating before the seasonal adjustment. The holiday pro-
cedure is based on the X-13-ARIMA-SEATS program, with holiday weights
constant over time. The outliers and intervention adjustment also uses the
X-13-ARIMA-SEATS program.

The official data both SA and NSA is subject to revisions with each publi-
cations. The main source of changes is the revisions of the seasonal factors, as
showed in Figure 3. We focus in this illustration on the claims values for the
first publication and the last available vintage (end of October 2023).

The Covid-19 pandemic has also led to further changes in the methodology.
Due to its extreme impact on unemployment claims, the BLS changed the
seasonal factors from multiplicative to additive for the period from March 2020
to June 2021, then switched back to multiplicative after that date. The extreme
nature of the event and its duration also necessitated an a posteriori update (in
April 2023) of the outliers’ specification during the pandemic period, leading to
major revisions of the seasonal factors from the end of 2021.

9.1.3 STAHL set-up

We will now apply the STAHL procedure to produce our own version of the
seasonally adjusted claims data. In doing so, we are operating under real-time
conditions, meaning that there are no revisions of the data, and we use real-time
data vintages from May 2009 to November 2023.

First, following the official procedure, we assume a multiplicative seasonality
scheme, meaning a log transformation is applied. Given the weekly frequency
of the data, we apply the resampling procedures described in section 4.2 to
have 53 equally spaced datapoints per year. The resampled holidays given to
the HTL procedure are the following: New Year’s Day, Washington’s Birthday,
Memorial Day, Independence Day, Labor Day, Columbus Day, Veteran’s Day,

9The Aruoba-Diebold-Scotti Business Conditions Index, published by the Federal Reserve
of Philadelphia, is designed to track real business conditions at a high observation frequency.
Its underlying economic indicators, which are seasonally adjusted, include weekly initial jobless
claims, monthly payroll employment, monthly industrial production, monthly real personal
income less transfer payments, monthly real manufacturing and trade sales, and quarterly real
GDP. These blend high-frequency and low-frequency data.

10https://www.bls.gov/lau/seasonal-adjustment-for-weekly-unemployment-insurance-claims.

htm
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Figure 3: Revisions of the initial claims data, first to last vintage (October
2023)

Thanksgiving, Christmas and Easter. The Barnacle procedure detects Barnacle
days effect before and after Thanksgiving and Independence day.

During the Covid period, we do not make the switch to additive, and keep
the multiplicative scheme. However, even with the built-in robustness to outlier
of the STAHL procedure, the unprecedented extreme behavior of the series
during that period contaminates the seasonal adjustment for the years 2022
and 2023. Therefore on that front we follow the BLS choice, and remove the
period from March 2020 to June 2021 from the data when performing STAHL
starting January 2022.

9.1.4 Point in Time Seasonal Adjustment with STAHL

We observe in Figure 4 that the seasonal adjustment obtained via STAHL
follows closely the official seasonally adjusted signal, both in terms of trend and
idiosyncratic behaviour. The procedure is robust to outliers. For instance, the
amplitude of the peak in August 2017 due to hurricane Harvey matches the
one measured in official data. However, the volatility around the Thanksgiving
period is higher for our model than for the official data, a consequence of the
upsampling.

Regarding the Covid period, as observed in Figure 5, STAHL is sufficiently
robust to outliers, such that maintaining a multiplicative scheme yields results
similar to those of the BLS methodology for the period from April 2020 to
December 2021. However, it is noteworthy that STAHL output diverges from
the official data briefly in January 2021, before recovering. For the post-Covid
period, the real-time output of STAHL is less volatile than the first estimates
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Figure 4: Comparison of STAHL vs first and last vintage SA (October 2023)

and closer to the latest vintage. This illustrates both the stability of our model
over time and the benefit of hindsight gained from excluding the Covid period
starting in 2022.

A visual analysis of the spectral density for the non-seasonally adjusted
original series and the STAHL seasonally adjusted series (see Figure 29 in Ap-
pendix A.4) shows that the procedure removes all the seasonal peaks from the
spectrum while preserving the lower frequency components.

The metrics shown in Table 1 confirm that, in the post-Covid period, the
STAHL model is closer to the latest estimates than to the first vintage in terms
of Mean Absolute Log Error. In the pre-Covid period, the Mean Log Error
of STAHL compared to both the first and last vintages is close to 0.02, which
is significant compared to the revised MLE. This suggests that the STAHL
output tends to underestimate the underlying trend compared to the official
data. This discrepancy could be attributed to differences in the methods of
trend separation. This underestimation also results in a Median Absolute Log
Error of around 0.03. This issue could potentially be addressed by forcing the
seasonal factor over each year to sum to zero.

vs 1st estimate vs last estimate Official revisions

Metrics MLE MALE MLE MALE MLE MALE

2009-2019 0.016 0.026 0.022 0.028 0.003 0.015

2020-2021 0.006 0.05 -0.025 0.061 -0.009 0.04

2022-2023 0.03 0.065 0.008 0.045 0.0 0.054

Table 1: Median Log Error and Median Absolute Log Error of STAHL compared
to official data
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Figure 5: Comparison of STAHL vs first and last vintage SA - Covid and post-
Covid period

Through this illustration, we demonstrate the capacity of STAHL to re-
produce the seasonal adjustment of the official methodology for high-frequency
data using a robust, more parsimonious, and purely point-in-time method.

9.2 Daily Electricity Data featuring Multiple Seasonality

9.2.1 Data Description

In this section, we analyze an empirical application of the STL procedure with
multiple seasonality. We seasonally adjust electricity consumption data in MWh
from the US power grid, published by the Energy Information Agency 11, with a
history from mid-2015 to the beginning of 2023. The data is daily and exhibits
both a weekly and a yearly seasonal pattern. While electricity data contains
useful economic information about both consumption and production, its low
signal-to-seasonality ratio can make it tricky to work with. This series appears
to be a perfect candidate to demonstrate the effectiveness of the STL procedure.
Figure 6 shows the raw, non-seasonally adjusted electricity data.

When dealing with multiple seasonalities, the proper procedure is to sea-
sonally adjust the shorter cycle first and then move on to the longer cycle.
Since we are dealing with weekly (7) and yearly (365) seasonality, we start of
by removing the weekly seasonality.

11https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/

US48/US48
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Figure 6: Electricity Consumption

9.2.2 Weekly Seasonal Adjustment

The first step of the STL procedure is to create subseries. Since we have 7 days
in our weekly seasonal cycle, we create 7 subseries, one for each day of the week.
Each subseries consists of only Mondays, Tuesdays, and so forth. An example
of the subseries for Monday and Sunday can be seen in Figure 7. Here, we
can clearly see that the electricity consumption is, on average, lower on Sunday
than on Monday. To capture this effect, a LOESS regression is fitted to the
data. This creates the smoothed subseries, which is conceptually similar to a
seasonal dummy for days like Monday or Sunday. The major advantage over a
simple seasonal dummy is that it is much more flexible and allows for changing
seasonal dynamics.

Figure 8 exhibits the first year of the data with the weekly seasonality
removed. The series looks much smoother and is now missing the weekly oscil-
lations. However, a lot of yearly seasonality is still visible, as there is a spike
during summer related to air conditioning and a second smaller spike in winter
for heating demand.

9.2.3 Yearly Seasonal Adjustment

Following the same procedure , to get the week-yearly seasonally adjusted series,
a second STL procedure is subsequently applied. Figure 9 exemplifies how the
different components of the series play out. It illustrates how much variation in
the series comes from the yearly seasonal component any why it is so important
to seasonally adjust such series before attempting to use them for econometric
procedures.
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Figure 7: Monday and Sunday Electricity Subseries

Figure 8: Electricity Consumption Weekly Seasonal Adjustment
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Figure 9: Electricity Consumption Components

Figure 10: Electricity Consumption Seasonal Patterns

9.2.4 Seasonally Adjusted Series

In Figure 10, the weekly and yearly seasonal components, as well as the to-
tal seasonality extracted, are provided. Figure 11 demonstrates the difference
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between the original series and the fully seasonally-adjusted series.

Figure 11: Electricity Consumption Seasonally Adjusted

9.3 Holiday Adjustment: Google Searches for ”Easter Bunny”

9.3.1 Data Description

Easter is a tricky holiday to capture in a seasonal adjustment procedure, as
it does not have a fixed place in the Gregorian calendar. To illustrate its
effect, we chose the Google Search Volume series for the keywords ”Easter
Bunny”. While most series have both seasonal and holiday effects, this series
has been specifically selected because all movements can clearly and easily be
attributed solely to the holiday effect. It therefore serves as an excellent test
bed to demonstrate the issues that can arise when trying to adjust for holidays
using the standard STL procedure, which is conceptualized for regular seasonal
effects. The Google Search Volume series starts in 2010 and goes all the way to
August of 2023, comprising 4981 daily values. They range between 0 and 100,
with the values representing the relative search volume for the period.

9.3.2 Applying Classical STL

When we look at the first 500 days of the Easter Bunny Google searches in
Figure 12, two of the Easter events can be easily isolated. The uptick in searches
starts quite some time before Easter and then quickly drops once Easter is
over. Examining the same time period after having seasonally adjusted the
series using the classical STL approach (Figure 13), the results appear rather
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disappointing. For each of the two Easter events, STL assigns some negative
values: for the first day before Easter, and for the second day after Easter.
Clearly, the fact that Easter moves around confuses the STL procedure, which
tries to find some kind of ’average’ Easter effect over a longer time period.

Figure 12: Easter Bunny searches

9.3.3 Applying HTL

As it is obvious that the classical STL procedure is not well-suited to handle
moving holiday effects, we developed the HTL procedure. Conceptually, HTL
works in a very similar way to the STL procedure. The main difference lies in
the fact that the subseries consist only of the holiday events, rather than having
a subseries for every period in a seasonal cycle.

Figure 14 shows the estimated holiday effect for Easter alongside the orig-
inal series. While Easter is deemed significant (and thus an ’Easter effect’ is
estimated), the results are not very impressive. The estimated Easter effect
appears much smaller than the actual effect and is confined to only one day
per Easter event. To correct for this, we developed the Barnacle procedure
(see appendix). In the Barnacle procedure, we begin by testing the statistical
significance of the holiday effect. If the holiday is found to be significant, we
repeat the process with the days on either side of the holiday, i.e., the Barnacle
days. We continue this process until we reach a day that is not significant or
we reach the 46-day limit.

In Figure 15 We can see that once we include the Barnacle day effects
our estimations are much closer to the original series than before. Figure 16
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Figure 13: STL seasonal adjustment

illustrates the dramatic improvement that comes from switching from STL to
HTL with the Barnacle procedure. As such, we are able to reduce both the
positive and the negative extremes of the series.

9.3.4 STAHL Application of Easter Bunny Searches

This series of searches for the Easter Bunny is simpler than many other series
that QuantCube uses daily. The main difference is that this series exhibits
purely holiday effects, whereas most series have a mix of holiday and seasonal
effects. We will examine this in more detail in the next section. Figure 17
demonstrates the seasonally adjusted series using HTL and STAHL. We can
observe that the STAHL seasonal adjustment slightly struggles with the nega-
tive effects, similar to what we observed in the STL procedure. However, it is
also evident that STAHL can handle the dates close to the Easter event quite
effectively. The efficiency of the HTL adjustment is visually confirmed by the
spectral density graph (see Appendix A.4, Figure 31 ), where we observe that
the HTL procedure removes the quick succession of peaks present in the den-
sity of the non-seasonally adjusted (NSA) data. These peaks correspond to the
Fourier transform of a Dirac comb-like holiday pattern12.

12A Dirac comb is a pattern of regularly spaced peaks in the time domain.
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Figure 14: Easter Bunny searches and estimated Holiday Effect

Figure 15: Easter Bunny searches and estimated Holiday + Barnacle Effect
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Figure 16: Easter Bunny searches STL vs HTL

Figure 17: Easter Bunny searches HTL vs STAHL
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9.4 STAHL Application on Alternative Data

9.4.1 Data Description

This section will cover the application of STAHL to alternative data series as it
is implemented at QuantCube. To illustrate the empirical uses of STAHL, we
present two different series. The first is a series on the daily trucking mileage on
German highways, and the second is air pollution (NO2) levels over the city of
Dongguan in China. Both of these series exhibit very high levels of seasonality
and significant moving holiday effects. In Figure 18, we can see the raw series,
both of which clearly show yearly seasonality.

Figure 18: Raw Series German Trucking and Chinese Pollution

Dongguan is an important industrial hub, particularly for manufacturing
and export, in the south of China. The pollution series for this city is captured
by the Ozone Monitoring Instrument (OMI) aboard NASA’s Aura satellite,
which was launched in 2004. The series starts on January 1st, 2005, and goes
until December 31st, 2022, providing a total of 6503 data points.

The German daily trucking mileage data are available online on the Destatis
website13. In Germany, there is a general driving ban for vehicles over 7.5 tonnes
in weight on public holidays. This means that, in addition to the seasonal effects
of the series, they also exhibit significant holiday effects. Ignoring these holiday
patterns can have very detrimental effects when trying to interpret the series.

9.4.2 Holiday Effects

The holiday adjustment of the Chinese series handles only the Chinese New
Year. Chinese New Year is an important family holiday in China, during which
many workers take time off to visit their families. As a result, industrial pro-
duction, particularly in human capital-intensive industries, drops during this
period. This, in turn, should lead to a predictable decrease in pollution during
the Chinese New Year event. Since the Chinese New Year marks the start of a
new year in the Chinese lunisolar calendar, it does not align perfectly with any
specific day in the Gregorian calendar. This makes it a moving holiday from
the perspective of the Gregorian calendar.

13see https://www.destatis.de/EN/Service/EXSTAT/Datensaetze/

truck-toll-mileage.html
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Figure 19: Holiday Effects German Trucking and Chinese Pollution

For the German holiday adjustment, there are three moving holidays that
need to be taken into account: Easter, Ascension Day, and Whit Monday. These
are all public holidays in Germany and, as such, do not permit heavy vehicles
to be driven on these days. For both series, these holidays lead to significant
drops in activity.

Figure 19 shows the holiday effects of both the series for the first two years.
The Barnacle effects for Chinese New Year go from −2 to +14 days. The
Barnacle days for Easter, Ascension day andWhit Monday are (−3,+6), (0,+6)
and (0,+6) respectively.

9.4.3 Seasonally Adjusted Series

Figures 20 and 21 exhibit the first two years of the series after seasonal adjust-
ment, both with and without the holiday effect removed. The missing holiday
effect in the German trucking series is much more apparent than in the Chinese
pollution series. However, both effects are significant in the Barnacle procedure,
indicating that they are clearly predictable. Just as with predictable seasonal
patterns, predictable holiday effects are not informative for nowcasting eco-
nomic time series and should thus be expunged from the series.

We can also examine the calendar day variance. While the effect is smaller in
the Chinese pollution series than in the German trucking series, we can clearly
see a drop in the variance of the series during periods of potential holiday events
in Figure 22, and to a lesser extent in Figure 23 in the Dongguan pollution series
as well. In the German series, we can also observe that even regular holidays
(such as Christmas) exhibit higher volatility than ’regular’ periods.

Looking at the spectral density of the Dongguan series, the STAHL proce-
dure removes the peak corresponding to the yearly periodicity while preserving
the shape of the spectrum for other frequencies (see Figure 30 in Appendix
A.4).
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Figure 20: German Trucks seasonally adjusted with/without holiday removal

Figure 21: Dongguan Pollution seasonally adjusted with/without holiday re-
moval
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Figure 22: German Trucks Subseries Variance

Figure 23: Dongguan Pollution Subseries Variance
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The spectral density of the STAHL-adjusted series of German trucks shows
that the peaks at yearly periodicity are suppressed, along with the multiple
peaks that follow. These correspond in the frequency domain to the seasonal
pattern and the Dirac comb-like holiday pattern, which are expunged by the
procedure (see Figure 32 in Appendix A.4).

10 Conclusion

In this research note, we unveil STAHL (Seasonal Trend And Holiday decom-
position based on LOESS), an innovative framework for seasonal adjustment
developed by QuantCube Technology. Drawing on the STL method pioneered
by R. B. Cleveland et al. (1990), STAHL has been specifically crafted to accom-
modate the intricate seasonal patterns observed in diverse daily datasets, such
as satellite imagery, textual analytics, daily pricing records, or web searches.
STAHL’s utility is manifold, but its three primary enhancements stand out.

Foremost is the procedure’s adeptness at point-in-time estimation, which
significantly enriches the ’industrial production’ of seasonally adjusted series.
This advancement paves the way for subsequent exploratory research into vari-
ous asymmetric filters to potentially improve the point-in-time trend extraction
procedure. Additionally, we introduce a ’holiday-loop’ feature that proficiently
accounts for holiday influences, adeptly adjusting for calendar effects that vary
over time, including those as diverse as the Chinese New Year and the Hi-
jri calendar. Lastly, STAHL’s enhanced capability for handling missing values
represents a leap forward in robustness, facilitating the management of gaps in
seasonal data.

The practical applications of STAHL have been thoroughly tested, showcas-
ing its ability to proficiently produce data that is adjusted for both seasonal and
working-day effects across a spectrum of frequencies and series types, includ-
ing both traditional and alternative ones. This establishes a new benchmark
for industrial-scale seasonal adjustment of high-frequency datasets and may
broaden the horizon for future applications in this domain.
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A Appendix

A.1 Upsampling Procedure

The upsampling of the weekly data consists in transforming our signal from a
sampling frequency of 365.25/7 ≈ 52.18 to a sampling frequency of exactly 53.
In practice, given y a seasonal, weekly time series and ŷ its discrete Fourier
transform, we obtain the modified Fourier transform by extracting ẑ:

ẑ(n) =

{
ŷ(n/M) if n/M ∈ Z
0 otherwise

}
where M = 52.18/53 and Z is the support of ŷ.

By taking the inverse Fourier transform or ẑ, we obtain a time series z that
has the exact same spectral signature as y but sampled at a frequency that
suits the STAHL procedure. After the seasonal adjustment of the upsampled
data, with a np parameter set to 53, we can downsample back the data to its
weekly frequency by applying the same methodology with M ′ = 53/52.18.

A.2 LOESS Confidence Interval

In this part we need to specify some notation. (xi, yi) refers to the set of (x, y)
values that are observed in the kernel Ki at point i. The kernel simply applies
the set of weights (as can be seen in Figure 2) to the points. A WLS (Weighted
Least Square) regression is then applied to get the vector of estimates ŷi. N
is the total number of data points (including missing values). q refers to the
kernel width in the LOESS. α is the significance level. We finish off with SEi

which is the standard error for each estimation point in the LOESS. Once this
has been calculated it is trivial to use a t-statistic (q) to find the Confidence
Interval (CI) around the estimated regression line. This procedure is loosely
based on the CI procedure for weighted regressions exposed in Chatterjee and
Hadi (2013). The validity of the LOESS confidence procedure is confirmed via
Monte-Carlo simulations.

Algorithm 1 LOESS confidence interval

1: for i <= N do
2: for j <= n do
3: ŷi[j]←WLS(y, x,W [i], j)

4: ε2i [j]← (yi[j]− ŷi[j])
2

5: SSTxi ←
∑q

j=1(Wxi[j]−Wxi)
2

6: var(ŷi)← 1
q−2

∑q
j=1 ε

2
i [j]

7: var(xi)← 1
q

∑q
j=1 x

2
i [j]

8: SEi ←
√

var(ŷi)·var(xi)
SSTxi

9: CIi ← ŷi[0]± (t(α/2, q) · SEi)
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A.3 HTL Barnacle Procedure

The Barnacle procedure that we developed here works particularly well in cap-
turing flexible holiday effects. One of the particular challenges was ensuring
that the number of false positives was kept to a minimum. To illustrate this
point, we show how the Easter Bunny series reacts when a Thanksgiving holiday
dummy is included.

A.3.1 The Barnacle Algorithm

Notation: L is a N × h matrix where N is the number of observations and h
is the number of holidays that are evaluated. Lb is a shifted version of L to
mark the Barnacle days. In this example, h is 2, Easter and Thanksgiving. L
contains 0 on days that are not a holiday event and 1 on days that are holiday
events. H is a matrix with n × h values. n is the number of holiday events
that are observed in the series, for Easter or Thanksgiving this means 1 holiday
event per year so n << N . ŷH is a vector of length N that all estimated holiday
effects.

Algorithm 2 Barnacle Procedure

1: H ← y[L = 1]
2: Ĥ ← LOESS(H)

3: if Ĥ is significant then
4: ŷH [L = 1]← Ĥ

5: i← 0
6: while Ĥ is significant do
7: i← i+ 1
8: Lb ← shift(L, i)
9: H ← y[L = 1]

10: Ĥ ← LOESS(H)

11: if Ĥ is significant then
12: ŷH [Lb = 1]← Ĥ

13: i← 0
14: while Ĥ is significant do
15: i← i− 1
16: Lb ← shift(L, i)
17: H ← y[L = 1]
18: Ĥ ← LOESS(H)

19: if Ĥ is significant then
20: ŷH [Lb = 1]← Ĥ
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A.3.2 Testing Significance

Normal significance tests are conducted by examining how much of the confi-
dence interval (CI) contains the x-axis. When testing the significance of hol-
idays, the main issue is that holidays tend to introduce a lot of additional
volatility into the series. Figure 12 clearly provides evidence that the series
is very volatile around Easter events, whereas during the rest of the year it
is quite stable. This creates an issue with false positives when testing for the
significance of other holidays occurring during ’stable’ periods. We plot the
variance of each day of the year for the Easter Bunny series in Figure 24. It is
clearly evident that during the period of possible Easter events, there is a much
higher variance in searches than during the rest of the year. During the period
of possible Thanksgiving dates, the variance is close to zero. This presents an
issue because the CI heavily depends on the variance of the true series.

Figure 25 shows the subseries and the smoothed regression with the CI of
Easter and Thanksgiving next to each other. Both pass the 80% significance
test. However, when looking at the scale and plotting both series (Figure 26),
Easter has clearly a much more important effect on the series than Thanksgiv-
ing.

In order to counteract these effects we use an adjusted-CI (aCI) to evaluate
its significance. The aCI uses a multiplier to increase or decrease the CI of a
series. In order to calculate the aCI we take the average variance of the series
and we divide this by the variance of the holiday subseries.

aCI = CI · mean(var(daily subseries)

var(holiday subseries)

Once we apply the aCI we can see in Figure 27 that the significance values
have changed. The Easter subseries now has a significance of 90% while the
significance of the Thanksgiving series has fallen to just 10%. In Figure 28 we
can see that the width of the aCI of the two series is now very similar. The
difference comes form the magnitude of the effect.
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Figure 24: Variance of Easter Bunny searches

Figure 25: Easter and Thanksgiving Significance with Normal CI
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Figure 26: Easter and Thanksgiving with Normal CI

Figure 27: Easter and Thanksgiving Significance with Adjusted CI
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Figure 28: Easter and Thanksgiving with Adjusted CI
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A.4 Spectral density plots

Figure 29: Spectral density for STAHL SA and NSA Initial claims data

Figure 30: Spectral density for STAHL SA and NSA Pollution over Dongguan,
China
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Figure 31: Spectral density for HTL SA and NSA Google search volume for
”Easter Bunny”

Figure 32: Spectral density for STAHL SA and NSA German Trucks Mileage
Index
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